我们考虑在无法访问网络培训数据(例如由于隐私或安全问题)的情况下为神经网络产生解释。最近,已经提出了$ \ Mathcal {i} $ - 网络是一种无样品后全球模型可解释性的方法,不需要访问培训数据。他们将解释作为机器学习任务,将网络表示(参数)映射到可解释功能的表示。在本文中,我们将$ \ Mathcal {i} $ - 网络框架扩展到标准和软决策树作为替代模型的情况。我们提出了相应的$ \ Mathcal {i} $ - 净输出层的合适决策树表示和设计。此外,我们通过在生成$ \ Mathcal {i} $ - NET的培训数据时考虑更现实的分布来制作适用于现实世界任务的NETS $ \ MATHCAL {I} $ - NETS。我们对传统的全球,事后解释性方法进行经验评估我们的方法,并表明当无法访问培训数据时,它可以取得优势。
translated by 谷歌翻译
Eco-driving strategies have been shown to provide significant reductions in fuel consumption. This paper outlines an active driver assistance approach that uses a residual policy learning (RPL) agent trained to provide residual actions to default power train controllers while balancing fuel consumption against other driver-accommodation objectives. Using previous experiences, our RPL agent learns improved traction torque and gear shifting residual policies to adapt the operation of the powertrain to variations and uncertainties in the environment. For comparison, we consider a traditional reinforcement learning (RL) agent trained from scratch. Both agents employ the off-policy Maximum A Posteriori Policy Optimization algorithm with an actor-critic architecture. By implementing on a simulated commercial vehicle in various car-following scenarios, we find that the RPL agent quickly learns significantly improved policies compared to a baseline source policy but in some measures not as good as those eventually possible with the RL agent trained from scratch.
translated by 谷歌翻译
With the growing need to reduce energy consumption and greenhouse gas emissions, Eco-driving strategies provide a significant opportunity for additional fuel savings on top of other technological solutions being pursued in the transportation sector. In this paper, a model-free deep reinforcement learning (RL) control agent is proposed for active Eco-driving assistance that trades-off fuel consumption against other driver-accommodation objectives, and learns optimal traction torque and transmission shifting policies from experience. The training scheme for the proposed RL agent uses an off-policy actor-critic architecture that iteratively does policy evaluation with a multi-step return and policy improvement with the maximum posteriori policy optimization algorithm for hybrid action spaces. The proposed Eco-driving RL agent is implemented on a commercial vehicle in car following traffic. It shows superior performance in minimizing fuel consumption compared to a baseline controller that has full knowledge of fuel-efficiency tables.
translated by 谷歌翻译
This paper develops a clustering method that takes advantage of the sturdiness of model-based clustering, while attempting to mitigate some of its pitfalls. First, we note that standard model-based clustering likely leads to the same number of clusters per margin, which seems a rather artificial assumption for a variety of datasets. We tackle this issue by specifying a finite mixture model per margin that allows each margin to have a different number of clusters, and then cluster the multivariate data using a strategy game-inspired algorithm to which we call Reign-and-Conquer. Second, since the proposed clustering approach only specifies a model for the margins -- but leaves the joint unspecified -- it has the advantage of being partially parallelizable; hence, the proposed approach is computationally appealing as well as more tractable for moderate to high dimensions than a `full' (joint) model-based clustering approach. A battery of numerical experiments on artificial data indicate an overall good performance of the proposed methods in a variety of scenarios, and real datasets are used to showcase their application in practice.
translated by 谷歌翻译
Reducing the quantity of annotations required for supervised training is vital when labels are scarce and costly. This reduction is especially important for semantic segmentation tasks involving 3D datasets that are often significantly smaller and more challenging to annotate than their image-based counterparts. Self-supervised pre-training on large unlabelled datasets is one way to reduce the amount of manual annotations needed. Previous work has focused on pre-training with point cloud data exclusively; this approach often requires two or more registered views. In the present work, we combine image and point cloud modalities, by first learning self-supervised image features and then using these features to train a 3D model. By incorporating image data, which is often included in many 3D datasets, our pre-training method only requires a single scan of a scene. We demonstrate that our pre-training approach, despite using single scans, achieves comparable performance to other multi-scan, point cloud-only methods.
translated by 谷歌翻译
Deep generative models parametrized up to a normalizing constant (e.g. energy-based models) are difficult to train by maximizing the likelihood of the data because the likelihood and/or gradients thereof cannot be explicitly or efficiently written down. Score matching is a training method, whereby instead of fitting the likelihood $\log p(x)$ for the training data, we instead fit the score function $\nabla_x \log p(x)$ -- obviating the need to evaluate the partition function. Though this estimator is known to be consistent, its unclear whether (and when) its statistical efficiency is comparable to that of maximum likelihood -- which is known to be (asymptotically) optimal. We initiate this line of inquiry in this paper, and show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated -- i.e. the Poincar\'e, log-Sobolev and isoperimetric constant -- quantities which govern the mixing time of Markov processes like Langevin dynamics. Roughly, we show that the score matching estimator is statistically comparable to the maximum likelihood when the distribution has a small isoperimetric constant. Conversely, if the distribution has a large isoperimetric constant -- even for simple families of distributions like exponential families with rich enough sufficient statistics -- score matching will be substantially less efficient than maximum likelihood. We suitably formalize these results both in the finite sample regime, and in the asymptotic regime. Finally, we identify a direct parallel in the discrete setting, where we connect the statistical properties of pseudolikelihood estimation with approximate tensorization of entropy and the Glauber dynamics.
translated by 谷歌翻译
本文介绍了基于2022年国际生物识别技术联合会议(IJCB 2022)举行的基于隐私感知合成训练数据(SYN-MAD)的面部变形攻击检测的摘要。该竞赛吸引了来自学术界和行业的12个参与团队,并在11个不同的国家 /地区举行。最后,参与团队提交了七个有效的意见书,并由组织者进行评估。竞争是为了介绍和吸引解决方案的解决方案,这些解决方案涉及检测面部变形攻击的同时,同时出于道德和法律原因保护人们的隐私。为了确保这一点,培训数据仅限于组织者提供的合成数据。提交的解决方案提出了创新,导致在许多实验环境中表现优于所考虑的基线。评估基准现在可在以下网址获得:https://github.com/marcohuber/syn-mad-2022。
translated by 谷歌翻译
具有通用机器人臂的外星漫游者在月球和行星勘探中具有许多潜在的应用。将自主权引入此类系统是需要增加流浪者可以花费收集科学数据并收集样本的时间的。这项工作调查了深钢筋学习对月球上对象的基于视觉的机器人抓握的适用性。创建了一个具有程序生成数据集的新型模拟环境,以在具有不平衡的地形和严酷照明的非结构化场景中训练代理。然后,采用了无模型的非政治演员 - 批评算法来端对端学习,该策略将紧凑的OCTREE观察结果直接映射到笛卡尔空间中的连续行动。实验评估表明,与传统使用的基于图像的观测值相比,3D数据表示可以更有效地学习操纵技能。域随机化改善了以前看不见的物体和不同照明条件的新场景的学识关系的概括。为此,我们通过评估月球障碍设施中的真实机器人上的训练有素的代理来证明零射击的SIM到现实转移。
translated by 谷歌翻译
变形面的图像对面对识别的安全系统构成了严重威胁,因为它们可用于非法验证具有单个变形图像的多人身份。现代检测算法学会使用真实个体的真实图像来识别这种变形攻击。这种方法提出了各种隐私问题,并限制了公开培训数据的数量。在本文中,我们探讨了仅在不存在的人及其各自的形态上接受训练的检测算法的功效。为此,对两种专用算法进行了合成数据的训练,然后在三个现实世界数据集上进行了评估,即:FRLL-MORPHS,FERET-MORPHS和FRGC-MORPHS。我们的结果表明,合成的面部图像可以成功用于检测算法的训练过程,并将其概括为现实世界情景。
translated by 谷歌翻译
该报告说明了基于音频和视频数据的最成功的AAL应用程序和功能的艺术状态,即(i)生命式和自我监控,(ii)对生命体征的远程监控,(iii)情绪状态识别,((iv)食物摄入量监测,活动和行为认识,(v)活动和个人帮助,(vi)手势识别,(vii)秋季检测和预防,(viii)移动性评估和脆弱的识别以及(IX)认知和运动康复。对于这些应用程序方案,该报告说明了科学进步,可用产品和研究项目的状态。开放的挑战也被突出显示。
translated by 谷歌翻译